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THE FRACTURE TOUGHNESS OF EPOXY-GLASS BEAD
COMPOSITES

A. T. DiBenedetto and A. D. Wambach*
Materials Research Laboratory
Washington University
St. Louis, Missouri 63130

Abstract

The plane strain fracture toughness of epoxy resins and glass bead filled
epoxy composites has boen invertigated. Primary parameters were curing agent
concentration, filler concentration, adhesion of filler to polymer, temperature, and
water immersion. Fracture toughness was measured using double edge notched

specimens and tensile strength and Young's modulus were measured using standard

the ability to dissipate energy in the polymer phase. At higher temperatures and/or
increased catalyst concentration, the unfilled epoxy became more ductile, its frac-
ture surface became rougher, and its fracture energy was increased. At lcwer tempera-
tures, where the epoxy was relatively brittle, the addition of glass beads increased the
fracture energy and induced roughness in the otherwise smooth fracture surface. When
the epoxy was ductile, the addition of beads tended to decrease the fracture energy.

The reduction of fracture energy for the ductile polymer was attributed to the reduction

*
Presently at General Electric Co., Chemical Development Operation, One Plastics

ASTM tensile bars. Scanning electron microscopy was used to examine the fracture
surfaces.
It was found that the energy required for fracture depended primarily on
Avenve, Pittsfield, Mass. 0120l l
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of the amount of polymer surface created.

Adhesion of the matrix to the glass beads was only important when the
polymer was ductile. Improved adhesion permitted the beads to constrain polymer
flow and decrease the fracture energy. Poor adhesion permitted flow around the
beads which required additional energy for crack propagation. At low tempera-
tures, where the matrix was biittle, the additional constraints caused by adhesion
appeared to make littie difference.

Water absorption resulted in plasticizing the polymer, destroying the inter-
face, and probably destroying the polymer near the interface. Short term immersion
increased the toughness because of the additionul ducti!ity. Long term immersion
tended to reduce the toughness. An effective cowupling agent minimized this reduc-
tion, thereby showing that improved adhesion can improve the environmental

stability and extend the useful life of the material.
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THE FRACTURE TOUGHNESS OF EPOXY~-GLASS BEAD
COMPOSITES

A. T. DiBenedetto and A. D. Wambach*
Materials Research Laboratory
Washington University
St. Louis, Missouri 63130

Introduction

The fracture toughness of glass bead-epoxy composites depends primarily
on the ability to dissipate energy in the polymer phase. Factors which enhance
polymer flow and/or polymer surface roughness also increase the fracture toughness.
The parameters investigated included glass bead concentration, temperature, adhe-
sion of polymer to filler, water immersion, and curing agent concentration. The
fracture toughness was measured using double edge notched tensile specimens as

described previously (1).

The fiacture toughness parameter (y) is defined by Irwin (2) as:

2 (a+r) (a+r)
Y= OZWTOE'_V_L [fan '_\er + 0.l sin a'_w__.Z.J

where g is the gross section stress at onset of catastrophic fracture, based on the
original cross-section, W is the sample width, E is Young's modulus, v is
Polsson's ratio, a is the half crack length at onset of catastrophic fracture, and r

is Irwin's plastic zone correction factor, given by:
P y

o= X
b4

W -v)e >

where oy is the yield strength of the material.

* Presently at General Electric Co., Chemical Development Operation, One Plastic
Avenue, Pittsfield, Mass. 0120l
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The Polsson's ratio for a composite was computed by the rule of mixtures, (1.e.,
a volume fraction average) with y = 0.35 for the epoxy and v = 0.22 for the glass
beads.

The glass beads were Class IV Uni-Spheres, number 4000, diameter range of
| to 30 microns, purchased from Microbead Division, Cataphote Corporation. To
enhance adhesion, the beads were treated with either Union Carbide’s A-1100
(gamma-aminopropyltriethoxystlane) or A-137 (gamma-glycidoxypropyltrimethoxy-
stlane). To prevent ad1esfon, the beads were ireated with Union Carbide's A-156
(dimefhyldlchlorosilane).. Beads left univeated were used for a fourth composite
system.

The resin used was Shell's Epon 828, a diglycidyl ether-bisphenol A type

—r

epoxy. The curing agent was Curing Agent Z, a liquid eutectic mixture of aromatic

amines. The curing cycle for the systems was 24 hours at room temperature, 24 hours

at &0°C, 24 hours at 100°C, and 12 hours at 130°C, followed by slow cooling. The
samples were machined, further conditioned by arinealing at 100°C for 12 hours and
then stored in desiccators over silica gel until testing. The specimens used for the
water Immersion studies were immersed in distilled water at room temperature for the

specified time.

Fracture toughness of the Epon 828/Curing Agent Z epoxies appeared to depend
solely on the ability to dissipate energy in the polymer phase. The results for the dry
epoxlies are summarized in Table |. The effects of immersing these samples in water

are detailed in Table 2. The postulated explanations of the observed phenomena are

e
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based primarily on scanning electron microscope photographs of the fracture
surfaces, tensile strengths and Young's moduii.

Increase in the curing agent concentration or temperature increased the
fracture toughness of unfilled epoxy as shown in Figure |, Apparently, incompletely
reacted curing agent served as plasticizer and thersby lowered the glass transition
temperature and enhanced viscous flow during fracture. Similarly, higher tempera-
tures caused a corresponding enhancement of ductility and polymer flow, and thus
increased the fracture toughness. These increases in ductility were apparent in the
fracture surface morphology &s illustrated in Figures 2 and 3. The increase in

temperature had a greater effect on increasing the surface roughness than did the
:ncrease in curing agent concentration. Further evidence of the increased ductility
is shown by the decrease in Young's modulus (Figuro 4) and the decrease in tensile
strength (Figure 5).

Addition of glass beads to the brittle epoxy (Epon 828/20 phrZ) resulted in
Increased fracture toughness at room temperature as shown in Figure 6. As Is evident
from comparing Figure 7 with 2, the additior of beads resulted in Increased roughness
in the fracture surface, and probably increased the total amount of polymer surface per
unit area of cross-section. This additional polymer surface was probably instrumental
In increasing the fracture toughness. Only insignificant changes due to glass bead
surface treatment were observad at room temperature.

At 100°C apd 130°C (illustrated for 130°C in Figure 8), the fracture toughness
of A-156 silane treated beads was significantly greater than the fracture toughness of

the other apoxy composites. A close examination of the fracture surfaces reveals

S vage N T
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that when there is no adhesion, the polymer tends to flow away from the filler inter-
face leaving a large smooth crater within which the particle sits (Figure 9). On the
other hand, when there is adhesion, the polymer tends to be constrained by the rigid
filler surface and in a region of about /4 to 1/2 micron around the filler surface there
is a tendency for cavitation of the polymer rather than gross yielding (Figure 10). The
same situation exists in PPO-glass composites (1), but to even a greater extent. The
constraint to flow and the supplanting of the polymer by the addition of beads are
probably the primary factors that cause the decrease of the fracture toughness for
these composites. The tensile strengths and Young's moduli are illustrated in Figures |l
and 12. Below the glass transition temperatute Young's modulus was not affected by
bead surface treatment.

The fracture toughness of the unfilled epoxy increased significantly upon short
term immersion in distilled water at room temperature (Figure I3). Similar increases

for untreated bead composites after 100 hours are shown in Table 2. However, after

g e s SRS e e

135-160 days in water, the fracture toughness of untreated and A-156 treated materials

SR

reverted to slightly lower values than the dry composites. The fracture toughness for
composites containing A-1100 silane treated glass beads continued to increase for
longer periods of time as shown in Table 2 but ultimately reached a fairly constant
value. In all cases the water immersion caused decreases in tensile strengih ranging
from 20 to 50 percent of the dry strength.

The amount of water absorbed per unit volume of polymer in the composites
is shown in Figure 14. For immersionsof the order of 135-160 days, the amounts of
water absorbed per unit volume of polymer was greater than for the unfilled polymer
when there was no adhesion beiween polymer and filler (A-!58) but was less than for

the unfil.od polymer when there was good adhesion (A-1100). This clearly suggests
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that water accumulated at the poorly bondad interfaces causing a destruction of the
interface end a decrease in the physical properties of the system. Good adhesion
at the interface, however, caused a barrier to migration of water and in fact pro-
moted a lowering of the solubility of water in the epuxy near the interface, thereby
at least temporarily protecting the hydrophtiic surfaces from damage.

The tentative explanation for the initial increase in toughnes and continual
dacrease in strength is that the polymer phase is slightly plasticized during the initial
stage of water sorption, thereby enhancing the ductility. Continued sorption, however,
leads to @ migration of the water to the hydrophilic giass surfaces thus causing a
degradation of all physicol properties. The development of good adhasion at the
interface retards this latter phenomenon, thereby exterding tha useful life and improv-
Ing the environmental stability of the material.

it is the opinion of the authors, however, based on tentative data that will be
reporfed at a later dlh,\ that improved adhesion merely retards the migration of water
to the interface and that longer term exposure of these systems leads to the same kind
of degradation observed in the poorly adhering systems.
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TABLE 1.

Summary of Fracture Toughness Data for Dry

e o et el

T EIRAIRRE

Epoxy Systems.
Effecton y
of increase
Material Parameter in Parameter Reason Evidence
Unfilled Curing Increase Incompletely Decrease in
Epoxy Agent reacted curing  sirength and
Concentra~ agent plasti- modulus,
tion cized epoxy increase in
fracture surface
roughness
Unfilled Temperature Increase Increase in Decrease ir:
Epoxy ductility s trength and
modulus;
increase in
fracture surface
roughness
Glass Bead/ Adhesion None Comstraints Fractographic
Epoxy on polymer plus toughness
Composites flow due to date
at 25°C adhesion are
not important
when polymer
is very brittle
Glass Bead/ Adhesion Decrease Adhesion at Fractographic
Epoxy interface con- plus toughness
Composites strains polymer  data.
at 100°C, flow and signifi-
and 130°C cantly reduces
energy absorbing
ability of polymer.
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TABLE 1 - Continued

Effect of y on

increase in
Material Parameter Paramefer Reason Evidence
A-156 Silane Glass Increase Increase in total  Fra~tographic
treated Glass Bead polymer fracture |
Bee 4/Epoxy Concentration surface due to
Composites increased rough-
at 25°C, 100°C ness plus
and 130°C unconstrained
polymer flow i
around beads j
at fracture
surface.
Untreated, Glass Increase Increase in Fractographic
A-1100 silane Bead polymer fracture
treated, and  Concentration surface roughness
A-187 silane counterbalances
treated Glass the supplanting of 1
Bead/Epoxy polymer by beads.
Composites at Polymer ductility
25°C is not a dominant
factor.
Untreated, Glass Decrease Increase in total Fractographic

A-1100. §ilane Bead

freated and  Concentration
A-187 silane

treated Glass

Bead/Epoxy

Composites at
100°C and

130°C.

polymer fracture
surface is counter-
acted by constraint
of polymer flow
near heads.
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TABLE 2
l Effect of Water Immersion on Fracture Toughness
l ' of Epoxy Systems
| Polymer or Time In % Water % Waterper Unit % Change
? l Composite Water Absorbed Volume Polymer iny
| Epon 828 + |
[ 18 phr Z 100 hours 0.37 0.37 +70
D 19 phr Z 100 hours 0.39 0.39 +67
| 20 phr Z 100 hours 0.39 0.39 +65
[ 21 phr Z 100 hours 0.39 0.39 +62
| 22 phr Z 100 hours 0.38 0.38 +60
[ Epon 628 +
| 20 phr Z
! untreated =
[ beads
ve= 10 100 hours 0.42 0.46 +57
! .20 160 hours 0.39 0.49 +75
| [ .30 100 hours 0.34 0.49 +00
.30 160 days 2.23 4 3.8 -7
i
bi
{ [ Epon 828 +
H 20 phr Z
_, A-1100
[ ' treated
'_ beads
g , vg= 0 150 hours 0.37 0.4 +40
' [ .20 150 hours 0.3 0.39 +40
i 40 160 deys 1.95 2.17 +67
jf 20 160 days 1.58 1.98 +62.
[ .30 160 days 1.29 1.84 +53
’ Epon 828 +
} [ 20 phr Z
‘ A-156
i [ treated
‘ beads
A ve= .10 135 days 2.0l 2.23 +45
] [ .20 135 days 1.98 2.47 -17
» , om '35 “y’ 2-05 2093 -50
;([ Epon 815+ 100 hours 0.45 0.45 +50
t 20 phr Z
4
i
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Figure 4. Effect of Temperature and Catalyst Z Concentration on the Flexural
Modulus of Epon 828 Epoxies.
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Figure 5. Effect of Temperature and Catalyst Z Concentraticon on the Tensile Strength
of iz Iled Epon 828 Epoxies.
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Figure 9.

Fracture Surface of A-156 Silane Treated Glass~Epoxy Composite - Fractured
at 100°C. ‘
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Figure Il. Effect of Volume Fraction and Temperature on the Young's Modulus of
Glass Bead-Epoxy Composites.
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Figure |2. Effect of Temperature and Bead Treatment on the Tensile Strergth of Glass
Bead-Epoxy Composites.
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,;ning’olectron microscopy was used to examine the fracture surfaces.
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duction of the amount of polymer surface created.

Adhesion of the matrix to the glass beads was only important when

o

the polymer was ductile.-Improved adhesiogﬂgg;pi&gggwxge gggggmggh_quﬁ
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constrain polymer flow and decrease thu fracture energy. Poor

) zdhesion permitted flow around the beads which required additional
wnergy for crack propagation. At low temperatures, where the
matrix was brittle, the additional constraints czused by adhesion

appeared t»> make little difference.

“Water absorption resulted in plasticizing the polymer, destroving
the polymer near the interface.(/ghort term immersion increased
the toughness because of the additjonal ductility. Long term
immersion tended to reduce the toughnass. An effective coupling
agent minimized this reduction, th 1cby showing that improved
adhesion can improve the environmental stability and excend the
useful life of the material.
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